A FACILE SYNTHESIS OF NEW 4-(PHENYLAMINO)THIENO[3,2-d]PYRIMIDINES USING 3-AMINOTHIOPHENE-2-CARBOXAMIDE

Yang-Heon Song*

Department of Chemistry, Mokwon University, Daejeon 302-729, South Korea e-mail: <u>yhsong(@mokwon.ac.kr</u>

Abstract: Several new 4-(phenylamino)thieno[3,2-*d*]pyrimidine derivatives 3 were synthesized in high yield by the reaction of aniline derivatives and 4-chlorothieno[3,2-*d*]pyrimidine that can be easily prepared using 3-aminothiophene-2-carboxamide.

Introduction

Thienopyrimidine derivatives have been found to have good medicinal and biological activities.¹ Recently, a novel class of thieno[3,2-d]pyrimidine 1 has been identified as potent inhibitors of VEGF receptor-2 kinase, which is a key component of the signaling pathway responsible for the sprouting and maturation of new blood vessels from tumors.² New thieno[2,3-d]pyrimidine derivatives 2 were also prepared and investigated as selective and potent ligands for the 5-HT₃ receptor.³ 5-HT₃ receptor ligands have potential therapeutic applications in the treatment of psychosis, memory impairment, and drugs abuse.⁴

Since a variety of thienopyrimidine derivatives are needed for their biological importance, we herein wish to report a facile method for the preparation of new 4-(phenylamino)thieno[3,2-d]pyrimidine derivatives **3** using 3-aminothiophene-2-carboxamide **4**⁵ in stead of methyl 3-aminothiophene-2-carboxylate.

Results and Discussion

The cyclization reaction of methyl 3-aminothiophene-2-carboxylate with formic amide was not efficient in forming 5 by previous known method.⁶ Yield of the product does not exceed 50% and the reaction needs two steps, a very high temperature and longer reaction time. We found a facile synthetic route to 3 started from the condensation reaction of 3-aminothiophene-2-carboxamide 4^5 with excess

boiling formic acid for 4 h to give thieno[3,2-*d*]pyrimidin-4(3*H*)-one 5 (mp 222-223°C)⁶ in 90% yield. The resultant 5 was easily converted in 2h to 4-chlorothieno[3,2-*d*]pyrimidine 6 (mp 123-124°C)⁶ using excess POCl₃. The conversion of 6 to the new 4-(phenylamino)thieno[3,2-*d*]pyrimidine derivatives 3 was accomplished by treatment with the appropriate aniline for 3-5 h in a mixture of 2-propanol/THF/HCl(trace) in high yields (85-95%) as shown Table-1.

Table-1: 4-(Phenylamino)thieno[3,2-d]pyrimidine 3^a

	R	isolated yield(%)	mp(°C)
3 a ⁷	3'-Br	92	201-202
3b	н	88	186-188
3c	2'-CH ₃	90	220-221
3d	4'-Cl	95	101-102
3e	3'-I	85	139-140
3f	4'-OMe	91	155-157
3g	3',5'-diCl	92	167-169
3h	2,6'-diEt	90	65-67
3i	4'- <i>i</i> Pr	88	121-122

^a Satisfactory spectra for all new compounds were obtained in measurements

of ¹H and ¹³C NMR and MS

References

- 1. V. P. Litvnikov, Russ. Chem. Bull. 53, 487 (2004).
- 2. M. J. Munchhof et al, Bioorg. Med. Chem. Lett. 14, 21 (2004).
- 3. M. Modica et al, Bioorg. Med. Chem. 12, 3891 (2004).
- 4. A. J. Greenshaw, P. H. Silverstone, Drugs 53, 20 (1997).
- (a) L. H. Klemm, T. R. Weakley and Y.-H. Song, J. Heterocyclic Chem. 35, 1269 (1998). (b) P. R. Huddleston et al, J. Chem. Res. 2, 548 (1993).
- 6. M. Robba, J. M. Lecomte and M. C. de Sevricourt, Bull. Soc. Chim. Fr. 3630 (1970).
- 7. Compound 3a: yield 92%; mp 201-202°C; ¹H NMR(300MHz, DMSO-d₆): δ 9.80(s, 1H, NH), 8.64(s, 1H, pyrimidine), 8.24(d, J=6.0 Hz, 1H, thiophene), 8.18(s, 1H, H-2'), 7.82(dd, 1H, H-4'), 7.48(d, J=6.0 Hz, 1H, thiophene), 7.30(t, 1H, H-5'), 7.25(dd, 1H, H-6'); ¹³C NMR: δ 115.8, 120.1, 121.2, 123.6, 124.4, 125.6, 130.6, 134.6, 141.0, 153.8, 154.8, 160.5; MS(m/z):306(M⁺). Received on August 12, 2006.